Robust Shape Retrieval Using Maximum Likelihood Theory
نویسندگان
چکیده
The most commonly used shape similarity metrics are the sum of squared differences (SSD) and the sum of absolute differences (SAD). However, Maximum Likelihood (ML) theory allows us to relate the noise (differences between feature vectors) distribution more generally to a metric. In this paper, a shape is partitioned into tokens based on its concave regions, invariant moments are computed for each token, and token similarity is measured by a metric. Finally, a non-metric measure that employs heuristics is used to measure the shape similarity. The desirable property of this scheme is to mimic the human perception of shapes. We show that the ML metric outperforms the SSD and SAD metrics for token matching. Instead of the ML metric based on histograms for PDF approximation, which suffer from being sensitive to choices of bin width, we propose a Parzen windows method that is continuous and more robust.
منابع مشابه
A new shape retrieval method using the Group delay of the Fourier descriptors
In this paper, we introduced a new way to analyze the shape using a new Fourier based descriptor, which is the smoothed derivative of the phase of the Fourier descriptors. It is extracted from the complex boundary of the shape, and is called the smoothed group delay (SGD). The usage of SGD on the Fourier phase descriptors, allows a compact representation of the shape boundaries which is robust ...
متن کاملRobust multiplicative video watermarking using statistical modeling
The present paper is intended to present a robust multiplicative video watermarking scheme. In this regard, the video signal is segmented into 3-D blocks like cubes, and then, the 3-D wavelet transform is applied to each block. The low frequency components of the wavelet coefficients are then used for data embedding to make the process robust against both malicious and unintentional attacks. Th...
متن کاملAnalysis of a Problem Using Various Visions
In this paper an applied problem, where the response of interest is the number of success in a specific experiment, is considered and by various visions is studied. The effects of outlier values of response on results of a regression analysis are so important to be studied. For this reason, using diagnostic methods, outlier response values are recognized. It is shown that use of arc-sine ...
متن کاملRobustness-based portfolio optimization under epistemic uncertainty
In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...
متن کاملAlternative Robust Estimators for the Shape Parameters of the Burr XII Distribution
In general, classical methods such as maximum likelihood (ML) and least squares (LS) estimation methods are used to estimate the shape parameters of the Burr XII distribution. However, these estimators are very sensitive to the outliers. To overcome this problem we propose alternative robust estimators based on the M-estimation method for the shape parameters of the Burr XII distribution. We pr...
متن کامل